Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular characterization of the SPL gene family in Populus trichocarpa.

Identifieur interne : 002131 ( Main/Exploration ); précédent : 002130; suivant : 002132

Molecular characterization of the SPL gene family in Populus trichocarpa.

Auteurs : Caili Li ; Shanfa Lu [République populaire de Chine]

Source :

RBID : pubmed:24884654

Descripteurs français

English descriptors

Abstract

BACKGROUND

SPLs, a family of transcription factors specific to plants, play vital roles in plant growth and development through regulation of various physiological and biochemical processes. Although Populus trichocarpa is a model forest tree, the PtSPL gene family has not been systematically studied.

RESULTS

Here we report the identification of 28 full-length PtSPLs, which distribute on 14 P. trichocarpa chromosomes. Based on the phylogenetic relationships of SPLs in P. trichocarpa and Arabidopsis, plant SPLs can be classified into 6 groups. Each group contains at least a PtSPL and an AtSPL. The N-terminal zinc finger 1 (Zn1) of SBP domain in group 6 SPLs has four cysteine residues (CCCC-type), while Zn1 of SPLs in the other groups mainly contains three cysteine and one histidine residues (C2HC-type). Comparative analyses of gene structures, conserved motifs and expression patterns of PtSPLs and AtSPLs revealed the conservation of plant SPLs within a group, whereas among groups, the P. trichocarpa and Arabidopsis SPLs were significantly different. Various conserved motifs were identified in PtSPLs but not found in AtSPLs, suggesting the diversity of plant SPLs. A total of 11 pairs of intrachromosome-duplicated PtSPLs were identified, suggesting the importance of gene duplication in SPL gene expansion in P. trichocarpa. In addition, 18 of the 28 PtSPLs, belonging to G1, G2 and G5, were found to be targets of miR156. Consistently, all of the AtSPLs in these groups are regulated by miR156. It suggests the conservation of miR156-mediated posttranscriptional regulation in plants.

CONCLUSIONS

A total of 28 full-length SPLs were identified from the whole genome sequence of P. trichocarpa. Through comprehensive analyses of gene structures, phylogenetic relationships, chromosomal locations, conserved motifs, expression patterns and miR156-mediated posttranscriptional regulation, the PtSPL gene family was characterized. Our results provide useful information for evolution and biological function of plant SPLs.


DOI: 10.1186/1471-2229-14-131
PubMed: 24884654
PubMed Central: PMC4035897


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular characterization of the SPL gene family in Populus trichocarpa.</title>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193, China. sflu@implad.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24884654</idno>
<idno type="pmid">24884654</idno>
<idno type="doi">10.1186/1471-2229-14-131</idno>
<idno type="pmc">PMC4035897</idno>
<idno type="wicri:Area/Main/Corpus">002167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002167</idno>
<idno type="wicri:Area/Main/Curation">002167</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002167</idno>
<idno type="wicri:Area/Main/Exploration">002167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular characterization of the SPL gene family in Populus trichocarpa.</title>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193, China. sflu@implad.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Conserved Sequence (genetics)</term>
<term>Exons (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Introns (genetics)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Exons (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Introns (génétique)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence conservée (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Chromosomes, Plant</term>
<term>Conserved Sequence</term>
<term>Exons</term>
<term>Introns</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chromosomes de plante</term>
<term>Exons</term>
<term>Introns</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Séquence conservée</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Molecular Weight</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Famille multigénique</term>
<term>Gènes de plante</term>
<term>Masse moléculaire</term>
<term>Modèles génétiques</term>
<term>Motifs d'acides aminés</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>SPLs, a family of transcription factors specific to plants, play vital roles in plant growth and development through regulation of various physiological and biochemical processes. Although Populus trichocarpa is a model forest tree, the PtSPL gene family has not been systematically studied.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here we report the identification of 28 full-length PtSPLs, which distribute on 14 P. trichocarpa chromosomes. Based on the phylogenetic relationships of SPLs in P. trichocarpa and Arabidopsis, plant SPLs can be classified into 6 groups. Each group contains at least a PtSPL and an AtSPL. The N-terminal zinc finger 1 (Zn1) of SBP domain in group 6 SPLs has four cysteine residues (CCCC-type), while Zn1 of SPLs in the other groups mainly contains three cysteine and one histidine residues (C2HC-type). Comparative analyses of gene structures, conserved motifs and expression patterns of PtSPLs and AtSPLs revealed the conservation of plant SPLs within a group, whereas among groups, the P. trichocarpa and Arabidopsis SPLs were significantly different. Various conserved motifs were identified in PtSPLs but not found in AtSPLs, suggesting the diversity of plant SPLs. A total of 11 pairs of intrachromosome-duplicated PtSPLs were identified, suggesting the importance of gene duplication in SPL gene expansion in P. trichocarpa. In addition, 18 of the 28 PtSPLs, belonging to G1, G2 and G5, were found to be targets of miR156. Consistently, all of the AtSPLs in these groups are regulated by miR156. It suggests the conservation of miR156-mediated posttranscriptional regulation in plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>A total of 28 full-length SPLs were identified from the whole genome sequence of P. trichocarpa. Through comprehensive analyses of gene structures, phylogenetic relationships, chromosomal locations, conserved motifs, expression patterns and miR156-mediated posttranscriptional regulation, the PtSPL gene family was characterized. Our results provide useful information for evolution and biological function of plant SPLs.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24884654</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular characterization of the SPL gene family in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-14-131</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">SPLs, a family of transcription factors specific to plants, play vital roles in plant growth and development through regulation of various physiological and biochemical processes. Although Populus trichocarpa is a model forest tree, the PtSPL gene family has not been systematically studied.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we report the identification of 28 full-length PtSPLs, which distribute on 14 P. trichocarpa chromosomes. Based on the phylogenetic relationships of SPLs in P. trichocarpa and Arabidopsis, plant SPLs can be classified into 6 groups. Each group contains at least a PtSPL and an AtSPL. The N-terminal zinc finger 1 (Zn1) of SBP domain in group 6 SPLs has four cysteine residues (CCCC-type), while Zn1 of SPLs in the other groups mainly contains three cysteine and one histidine residues (C2HC-type). Comparative analyses of gene structures, conserved motifs and expression patterns of PtSPLs and AtSPLs revealed the conservation of plant SPLs within a group, whereas among groups, the P. trichocarpa and Arabidopsis SPLs were significantly different. Various conserved motifs were identified in PtSPLs but not found in AtSPLs, suggesting the diversity of plant SPLs. A total of 11 pairs of intrachromosome-duplicated PtSPLs were identified, suggesting the importance of gene duplication in SPL gene expansion in P. trichocarpa. In addition, 18 of the 28 PtSPLs, belonging to G1, G2 and G5, were found to be targets of miR156. Consistently, all of the AtSPLs in these groups are regulated by miR156. It suggests the conservation of miR156-mediated posttranscriptional regulation in plants.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A total of 28 full-length SPLs were identified from the whole genome sequence of P. trichocarpa. Through comprehensive analyses of gene structures, phylogenetic relationships, chromosomal locations, conserved motifs, expression patterns and miR156-mediated posttranscriptional regulation, the PtSPL gene family was characterized. Our results provide useful information for evolution and biological function of plant SPLs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Caili</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No,151, Malianwa North Road, Haidian District, Beijing 100193, China. sflu@implad.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>03</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24884654</ArticleId>
<ArticleId IdType="pii">1471-2229-14-131</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-14-131</ArticleId>
<ArticleId IdType="pmc">PMC4035897</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 2008 Jul 15;418(1-2):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Dec;229(1):99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2005;49(5-6):633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1990 Sep;141(1):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2391003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Apr;11(4):1239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1563342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 Aug 1;379(1):127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):683-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Sep;133(18):3539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(6):837-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Aug;12(2):367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Nov;139(3):1107-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16029-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12461176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Jan 15;250(1):7-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8569690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Sep 23;352(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16095614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Mar;41(5):744-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Apr;63(7):2809-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22291132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2003 Feb;4(2):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jan;227(2):505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Mar 1;11(5):616-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9119226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2001;48(2):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11732606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 1;366(2):256-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Dec;12(12):1871-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Feb 17;14(4):346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Aug;44(8):950-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22729225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2006 Sep;88(3):360-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1451-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19346325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1171-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Dec;50(12):2133-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Sep 3;237(1):91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10524240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 1;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Mar 12;337(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15001351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):3935-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012;12:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22776508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Nov;53(11):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Jun;42(6):545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Mar;120(3):491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Jun;42(6):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20495565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Jan 15;407(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2014 Jan;56(1):38-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1994 Mar-Apr;15(3-4):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8055880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Feb;63(3):429-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 May;67(1-2):183-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18278578</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002131 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002131 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24884654
   |texte=   Molecular characterization of the SPL gene family in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24884654" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020